Soft-NMS - Improving Object Detection with One Line of Code
نویسندگان
چکیده
Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) withM are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC 2007 (1.7% for both RFCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. Using Deformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for SoftNMS is publicly available on GitHub http://bit.ly/ 2nJLNMu.
منابع مشابه
Contours Extraction Using Line Detection and Zernike Moment
Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...
متن کاملLearning to Filter Object Detections
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processi...
متن کاملThe effect of Code switching on the Acquisition of Object Relative Clauses by Iranian EFL Learners
This study attempted to investigate the impact of teacher’s code-switching on the acquisition of a problematic grammatical structure, namely, object relative clauses, by intermediate EFL learners. Moreover, a secondary objective of the study was to determine the EFL learners’ attitudes and opinions regarding the effectiveness of teacher’s code-switching in their learning of a specific aspect of...
متن کاملImproving Object Localization with Fitness NMS and Bounded IoU Loss
We demonstrate that modern detection methods are designed to identify only a sufficently accurate bounding box, rather than the best available one. To address this issue we propose a simple and fast modification to the existing methods called Fitness NMS. This method is tested with the DeNet model and obtains a significantly improved MAP at greater localization accuracies without a loss in eval...
متن کاملDevelopment Hough transform to detect straight lines using pre-processing filter
Image recognition is one of the most important field in image processing that in recent decades had much attention .Due to expansion of related fields with image processing and various application of this science in machine vision, military science, geography, aerospace and artificial intelligence and lots of other aspects, out stand the importance of this subject.One of the most important aspe...
متن کامل